We report the observation of a novel phenomenon, the self-retracting motion of graphite, in which tiny flakes of graphite, after being displaced to various suspended positions from islands of highly orientated pyrolytic graphite, retract back onto the islands under no external influences. Reports of this phenomenon have not been found in the literature for single crystals of any kind. Models that include the van der Waals force, electrostatic force, and shear strengths were considered to explain the observed phenomenon. These findings may conduce to create nanoelectromechanical systems with a wide range of mechanical frequency from megahertz to gigahertz.